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Abstract 
A unified setting of the unit vectors in superspace 
groups for composite crystals is discussed. It sim- 
plifies the description of composite crystals and gives 
a systematic method for analyzing composite crystals 
in a manner similar to modulated structure analysis. 
The setting is generally different from the standard 
setting for modulated structures. The reflection condi- 
tions specific to it are given. The equivalence relation 
of the superspace groups for composite crystals is 
introduced. This is different from that for modulated 
substructures and leads to new symbols for the super- 
space groups of composite crystals. 

1. Introduction 
The superspace approach in crystallography was first 
introduced by de Wolff (1974) to describe modulated 
structures systematically and was applied to inter- 
growth compounds or misfit layer structures by Jan- 
ner& Janssen (1980). These so-called composite crys- 
tals consist of two or more substructures which have 
mutually incommensurate periods. The superspace 
group is applicable to specify the symmetry of such 
a structure because each substructure is a modulated 
structure (de Wolff, Janssen & Janner, 1981). Recently 
it was shown that such an approach is in fact efficient 
for the structure analysis of composite crystals (Kato, 
1990; Onoda, Kato, Gotoh & Oosawa, 1990). 
However, the theory of superspace groups is essen- 
tially for modulated structures. The composite crystal 
shows strong main reflections on two (or more) three- 
dimensional reciprocal lattices, part of which is over- 
lapped but the others are incommensurate. Such a 
situation is not explicitly taken into account in the 
theory. If we take reflections belonging to one such 
reciprocal lattice as the main reflections, the other 
reflections are regarded as satellite reflections. Con- 
sequently, if we choose a different host substructure, 
we get a different superspace-group symbol, which is 
generally not equivalent to the original one in the 
equivalence relation for modulated structures. The 
substructure is modulated by the existence of the 
other substructure. As a result, the composite crystal 
consists of several modulated substructures, which 
penetrate each other. However, we cannot say which 
is the host substructure. 
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To treat such a structure properly, we have to 
introduce new symbols of superspace groups for com- 
posite crystals. This leads to a new equivalence rela- 
tion and restricts a setting of the unit vectors. In this 
paper, we discuss the superspace groups for com- 
posite crystals and related problems, in particular, 
the structure-factor formula and the determination of 
possible modulation amplitudes for atoms in special 
positions. The setting of the unit vectors appropriate 
for composite crystals has been taken to analyze 
several structures based on the theory of Janner & 
Janssen (van Smaalen, 1989; Kato, 1990; Onoda, 
Kato, Gotoh & Oosawa, 1990). In this setting, the 
unit vectors (in the reciprocal space) are chosen from 
the lattice vectors of the reciprocal sublattices. It is 
shown that such a setting is possible for any composite 
crystal. The setting leads to extinction rules specific 
to the superspace group for the composite crystal. 
These are listed. Finally, we show several examples 
of the superspace groups for known composite crystal 
structures. A new version of the computer program 
REMOS (Yamamoto, 1982a) has been developed 
based on this theory. The first application of the 
program to a composite crystal structure will be 
described in a future paper (Ukei, Yamamoto, 
Watanabe, Shishido & Fukuda, 1992). 

2. One-dimensional composite crystals 

A characteristic feature of the usual modulated struc- 
ture is to show strong main reflections and weak 
satellite ones. The main reflections define a three- 
dimensional reciprocal lattice and give the three- 
dimensionally periodic average structure. In the 
theory of superspace groups for modulated structures, 
the first three axes of the higher-dimensional 
reciprocal lattice are taken to be the a*, b* and c* 
axes of the average structure and additional (fourth, 
f i f th , . . .  ) axes are not regarded as being equivalent 
to the first three (Janner & Janssen, 1979) because 
the strong main reflections can clearly be distin- 
guished from the satellite reflections and higher-order 
satellite reflections are weak. As a result, each atom 
is extended continuously over the additional 
dimension in superspace. In composite crystals, 
atoms belonging to one substructure are continuous 
in some subspace but atoms of the other substructure 
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are continuous in a different subspace as shown 
below. 

In order" to show equivalent descriptions of the 
composite crystal in superspace, first we consider the 
simplest one-dimensional composite crystal shown in 
Fig. 1. As in the description of the modulated structure 
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Fig. 1. Descriptions of a one-dimensional composite crystal as the 
intersection of  a two-dimensional crystal. Horizontal and vertical 
lines represent the external and internal spaces. Wavy lines stand 
for atoms which are continuous along two directions. (b) and 
(c) are obtained from (a) by different shear strains by which 
the points b and a in (a) are shifted in the internal space. In 
(c), the scale in the internal space is different from that in (a) 
and (b). The shear strain used leaves the external space invariant, 
so that the three representations shown in (a)-(c) are equivalent 
to each other (see text). 

in superspace, we take the external (physical) space 
along the horizontal line through the origin and the 
internal (complementary) space perpendicular to it 
(de Wolff, 1974). A composite structure in the physi- 
cal space is given by the intersection of the two- 
dimensional crystal at the one-dimensional external 
space in this simple case. As seen in Fig. l ( a ) ,  the 
composite crystal includes two modulated substruc- 
tures. In the first substructure, atoms are continuous 
along the b axis and in the second one they are 
continuous along the a axis. The origin of the modula- 
tion is clear in this case: the first substructure is 
modulated because of the interaction with the inter- 
penetrating second substructure and the second sub- 
structure is affected by the first one. The representa- 
tion of each modulated structure in Fig. l ( a )  is 
different from the standard representation for the 
usual modulated structure. In the latter (de Wolff, 
1974), each atom is continuous along the direction 
parallel to the internal space, while, in Fig. l ( a ) ,  
atoms are continuous along a direction oblique to the 
internal space. This is, however, equivalent to the 
representation in which either of the two substruc- 
tures is continuous along the internal space (Fig. lb  
or c). It is clear that the three representations in Fig. 
1 give the same atom position in the external space 
and therefore they are equivalent. If we consider an 
appropriate shear strain in Fig. l ( a )  which leaves the 
external space invariant, we obtain the standard rep- 
resentation for a given substructure (Figs. 1 b and c). 
But, in this case, the representation of the other modu- 
lated substructure is not standard. Consequently, 
there exists no standard representation for both sub- 
structures. 

The three equivalent representations give the same 
structure factor. This is shown for the case of har- 
monic modulation. We assume the Fourier ampli- 
tudes of displacement waves u ~ and u: along the 
external space for the first and second substructures. 
[The superscript j ( j  = 1 or 2) denotes the j th  sub- 
structure.] The atoms in the first substructure are 
continuous along the b axis and the atoms in the 
second one are continuous along the a axis, so that 
the coordinates of the atoms are given by 

x i =  a* .  u ! sin (2trill), 

yl = )71 +b* • u 1 sin (2K9'), 
(1) 

y2 = b* • u z sin (2~r:~2), 

x 2= ~2+a* • u 2 sin (27r~2), 

where .~J and )7 i are the coordinates of the j th  funda- 
mental structure from which the displacement is 
measured (straight lines in Fig. 1). In the above 
equations, a* .  u ~ or b* .  u j are invariant under the 
shear strain which leaves the external space invariant 
because the external components of a* and b* are 
unchanged under the shear strain (see Fig. 2). As a 
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result, the structure factor of the composite crystal 

F(h)  = f ' ( h e ) J _ k  (2 7rh ~ " u') 

+ [ f 2 ( h ~ ) v ~ / v 2 ] J _ h ( 2 7 r h e ' u 2 )  (2) 

is independent of the difference in the representations 
in Fig. 1, w h e r e f ( h  e) ( j  = 1, 2) are the atomic scatter- 
ing factors, the superscript e means the external com- 
ponent of a two-dimensional vector, h = ha* + kb*, 
and J,  is the Bessel function of order n. For the first 
and second substructures, the volumes" of the unit 

(a) 

(b) 

(c) 

Fig. 2. Diffraction patterns of the composite crystal shown in Fig. 
1. The three figures correspond to the three equivalent rep- 
resentations in Fig. 1. 

cell, v I and v 2, are equal to the periods of the average 
structures in the external space for the present (one- 
dimensional) case. 

The diffraction pattern of this structure shows a 
characteristic feature. There are two sets of strong 
reflections with indices h0 or Ok along the principal 
axes (Fig. 2a). These are called main reflections. The 
h0 reflections mainly come from the first substructure 
[first term in (2)] while the Ok reflections come from 
the second one (second term). The diffraction pattern 
corresponding to Fig. l (b)  or (c) is obtained from 
Fig. 2(a) by considering an appropriate shear strain 
which leaves the internal space invariant (Figs. 2b 
and c). It should be noted that the position of the 
reflection in the external space (after the projection 
along the internal space) and the intensity remain 
unchanged. It is noted that an infinite number of 
equivalent representations corresponding to different 
shear strains are present. 

3. Superspace groups for composite crystals 

The symmetry of composite crystals can be expressed 
by the superspace group of the modulated structure 
(Janner & Janssen, 1980). This causes difficulty in 
some cases. As shown in the previous section, the 
same structure can be described in several ways. For 
the setting in Fig. l (b) ,  the first substructure gives 
the main reflections, which are on the external space 
(Fig. 2b). Corresponding to this view, we have one 
superspace group, while the other view in Fig. l(c) 
may give a superspace group which is not equivalent 
to the former since the reflections coming from the 
second substructure are regarded as the main reflec- 
tions. The one-dimensional composite crystal dis- 
cussed here causes no problem because relevant 
superspace groups are limited. In the real case shown 
below, however, the first view gives the superspace 

l)R3m (see oP31c while the second one gives - l,  group . .  I11 
§ 9). These two superspace groups are non-equivalent 
under the equivalence relation for the modulated 
structure (de Wolff, Janssen & Janner, 1981). Further- 
more, if we allow a setting different from these two, 
we may obtain another superspace group. 

The symmetry of a composite crystal with two 
substructures is properly specified by a pair of two 
superspace groups which specify the symmetries of 
two modulated substructures. In the present case, it 
is written a s  RP31C'Ill --DR3mls • Similarly, in a composite 
crystal with three substructures, we use a triplet of 
the superspace-group symbols for three modulated 
substructures. In this notation each substructure is 
treated equivalently to the other because the inter- 
change of the first and second substructures simply 
means the interchange of the two superspace-group 
symbols. Therefore these two superspace groups are 
called equivalent. This implies the equivalence rela- 
tion of the superspace group for composite crystals: 
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the superspace groups obtained from each other by 
the interchange of substructures are equivalent. The 
introduced symbol of the superspace group for com- 
posite crystals is new in two ways. First, it includes 
two or more superspace-group symbols. Second, the 
setting of the superspace group for each modulated 
substructure can be non-standard as shown in the 
next section. 

4. Types of composite crystal and unified setting of 
unit vectors 

There exist several limitations for the formation of 
composite crystals because, if we neglect the modula- 
tion, they consist of two or more interpenetrating 
crystals with periods incommensurate to each other. 
It is clear that a one-dimensional composite crystal 
cannot avoid having unrealistic short interatomic dis- 
tances (Fig. 1). In physically reasonable composite 
crystal structures, therefore, the two substructures in 
Fig. 1 have to be located at different positions in 
another dimension. Such a consideration enables us 
to classify all composite crystals into three types. 
There exists no composite crystal without a common 
period for some pair of substructures. (It should be 
noted that the common period does not exclude the 
case of  two axes commensurate to each other.) There- 
fore, at least one common period for any pair of 
substructures has to be present. 

In the simplest case, all the substructures have two 
common periods and periods incommensurate to 
each other along the one remaining direction. In this 
case, the a* axis and b* axis are common to all 
the substructures (a*t = a.2 = b*l = b.2 = • . . ,  . . . ,  

C * t , C * 2 , . . . ) .  All composite crystals with four- 
dimensional superspace groups belong to this type. 
This is called the first type (or type I). 

In the second type (type II), all the substructures 
have one common axis but have incommensurate 
periods along the other directions. This has a five- 
dimensional (or higher-dimensional) superspace 
group. In a crystal consisting of two substructures, 
there are five independent periods, a*l = a.2, 
b *1, c .1,  b .2 ,  C .2.  If we consider composite crystals 
with more than two substructures, we can consider a 
structure in which all the substructures have a com- 
mon period along one direction but there exists 
another common period among some (not all) pairs 
of substructures along another direction. For 
example, we consider a composite crystal consisting 
of three substructures in which the b* axis is common 
to the first pair and the c* axis to the second. Then 
the composite crystal has five periods, that is, a * t =  
a*2=a  .3, b .1 = b  .2, c *l, c ' 2 : c  .3, b .3, and its sym- 
metry is described by a triplet of five-dimensional 
superspace groups. 

The composite crystal of the third type (type III) 
consists of more than two substructures and has com- 

mon axes not for all the substructures but only for 
each pair of substructures. For example, we can con- 
sider a composite crystal composed of three substruc- 
tures in which a *~ = a .2, b *~ = b .3, c .2 = c .3 but other 
axes are incommensurate to each other. This has six 
independent periods, a *l, b .1, c .1, b .2, c .2, a .3, and 
its symmetry is specified by a triplet of six- 
dimensional superspace groups. So far types I and II 
have been found but type III is not known to the 
author 's knowledge. 

The above considerations lead to a unified setting 
of the unit vectors in describing a composite crystal 
in superspace. We take all the unit vectors from the 
set of reciprocal-lattice vectors for each substructure. 
These are recognized as the projection of the unit 
vectors of a higher-dimensional reciprocal lattice. For 
the composite crystal of type I or II, two or one of 
them can be common to all the substructures owing 
to the common periods. For example, in the simplest 
case of type I mentioned above, we can take a*, b*, c *~ 
and c .2 and recognize them as the projection of the 
unit vectors in the four-dimensional lattice onto the 
external space, where a* and b* are the reciprocal 
vectors common to the two substructures and c .1 and 
c .2 are the third unit vectors for the first and second 
substructures. As stated above, each substructure is 
modulated by the existence of the other substructure. 
The modulation wave vector for the first modulated 
substructure is therefore C .2 while that of the second 
is c *~. A similar consideration can be made for the 
cases of types II and III. 

We consider the latter case of type II mentioned 
above in detail because it is more general than the 
former and no example of type III has been found. 
In this case, the wave vectors of the modulation waves 
for the first substructure are b .3 and C .2,  those for 
the second one are b .3 and c .1 and those for the third 
one a r e  b *l and c .2. That is, the unit vectors of the 
j th  substructure and wave vectors of the modulation 
waves, a j*, bJ*,cJ*,k~*,k{ *, are obtained from 
a*, b *1, c *t, b .3, c .2 by the permutation PJ, where 
p~=(~.2,3,4,5)=(1) ' p2 (1:2.3.4.54)=(3,4,5) and 

2 3 4 -~- 2 , 5 , 3 ,  

2: 3: 4: 5) = (2, 4). In particular, we take the iden- P3 = (I!4,,,2. 
tity permutation for the first substructure. This sim- 
plifies the treatment of composite crystals in super- 
space. We consider the five-dimensional reciprocal 
lattice, the unit vectors of which are projected onto 
the independent unit vectors selected above 
(a*, b *l, c *1, b .3, c'2). As mentioned earlier, we can 
consider an infinite number of such lattices but these 
are all equivalent. We take one of them and write its 
unit vectors as d* ( i =  1 , 2 , . . . ,  5) and unit vectors 
reciprocal to them as di (i = 1, 2 , . . . ,  5) (i.e. di .  d* = 
8ii). Then, (a j*, b j*, c ~*, k~*, k~*) = ra*J a*J a*J a*J L U l  , u 2  , ~ 3  , ~ 4  , 

d*J]e=[pJ (d  *, d*, d3*, d*, d*, d6*)] e by definition, 
where the superscript e means the external com- 
ponent of the five-dimensional vector. The reflec- 
tion with the diffraction vector h e is regarded as the 
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5 
projection of a five-dimensional vector h = Z~:1 hid* 
onto the external space. 

Each substructure can conveniently be described 
by its own coordinate system referring to d~ (i = 1, 
2 , . . . ,  5). In particular, the substructure is continuous 
along a two-dimensional subspace spanned by d~ and 
d~. The superspace-group symbol for the j th sub- 
structure (appearing in the superspace group of the 
composite crystal) is obtained from that of the first 
substructure by the permutation PJ because the per- 
mutation matrix transforms the matrix representation 
of a symmetry element in the first substructure into 
the corresponding one in the j th  substructure. This 
means that the superspace groups of the modulated 
substructures are arithmetically equivalent to each 
other. 

In the unified setting described above, the selection 
of the unit vectors is strongly limited because the unit 
vectors of each modulated substructure in the 
reciprocal space is chosen among a set of the 
reciprocal-lattice vectors of the average substructures. 
Furthermore, the same vector is used when an axis 
is common to several substructures. Therefore, the 
setting of the unit vectors is unique except for the 
ambiguity in the choice of the unit vectors in each 
average substructure. On the other hand, such unit 
vectors may lead to a superspace group in a non- 
standard setting as shown in § 9. 

5. Structure factor and modulation wave 

In the setting described above, the modulated sub- 
structure is described in the same manner as for the 
usual modulated structure. For an n-dimensional 
case, the atom coordinates x~ with respect to d~ (i-- 
1 , 2 , . . . ,  n) are given by 

x~ = ~ + d  *j" ff (3) 

where ~ ( i=  1, 2 , . . . ,  n) are the atom coordinates 
for the j th  substructure which are obtained from the 
coordinates xi in the fundamental structure with 
respect to di by the permutation PJ and u j is the 
displacement from the fundamental structure and a 
periodic function o f ~ + i  (i = 1 , . . . ,  n -3 ) .  The modu- 
lation functions of the j th  modulated substructure 
have the same form as the corresponding ones in the 
usual modulated structure. The structure factor is 
given by 

&=E (v'lv')F~ (4) 
J 

1 1 

FJh = E E P~" J d2~+,, . . .  ~ d2~f~',(h)P ~', 
{ WI.,.J} ~ o o 

xexp {-  ,k= ~', h{(RJB'R~)'khJk 

+2"a'i ,=1~ h{(RJx'),+h~r{} (5) 

where h{ and r~ are the ith components of 
P J ( h ~ ,  h 2 , .  . . ,  h , )  and P J ( r ~ ,  r2 ,  . . . ,  r , ) .  The matrix 
representation of the rotation operator R ~ is obtained 
from that of the first substructure by the permutation 
of rows and columns according to PJ. The structure 
factor of the j th substructure [(5)] has the same form 
as the corresponding formula for the usual modulated 
structure (Yamamoto, 1982a) because each modu- 
lated substructure is the usual modulated structure. 
The structure factor of the total structure [(4)] is the 
summation of the structure factors of the modulated 
substructures with the weight proportional to the 
inverse of the unit-cell volume of the average sub- 
structure ft. The computer program for the refinement 
of the composite crystal has been developed on the 
basis of (4) and (5) by the modification of a previous 
program R E M O S  for modulated structures 
(Yamamoto, 1982a). 

In the modulated structure analysis, the amplitudes 
of possible modulation waves are limited when atoms 
are located at the special position in the average 
structure. (The average structure of the j th substruc- 
ture is obtained by the projection along the subspace 
spanned by d ~ , . . . ,  dJ,. This is inferred from Fig. 1 
because the j th substructure is continuous in such a 
subspace.) Then the possible modulation waves are 
constrained by the site symmetry as in the modulated 
structure. In order to find possible modulation waves, 
we can apply the same method as in the modulated 
structure (Yamamoto & Nakazawa, 1981; Yamamoto, 
1982b; van Smaalen, 1989; Kato, 1990). 

In conclusion, if we use the unified setting and the 
coordinate system for each substructure, the substruc- 
ture can be treated in the same way as the usual 
modulated structure and we can apply the method 
used in the modulated structure analysis to the analy- 
sis of the composite crystal. 

6. Additional symbols of superspace groups 

We confine ourselves to the symbols and superspace 
groups of composite crystals of type I with two sub- 
structures because their symmetry is specified by a 
four-dimensional superspace group and the list of 
five- and six-dimensional superspace groups has not 
yet been given. As shown above, the choice of the 
unit vectors is restricted in the unified setting. As a 
result, the setting may be non-standard not only for 
the superspace group of the modulated substructure 
but also for the space group of the average substruc- 
ture. We may have to use, for example, a face-centered 
lattice for a monoclinic structure in some cases and 
a wave vector such as k = a* + b* + yc* for which the 
symbol of the superspace group is not given (see § 9). 
Therefore, we introduce several symbols for the 
superspace groups in addition to those introduced by 
de Wolff e t  al .  (1981 ). Additional rational components 
of the wave vector k are (1/2,1,0) ,  (1/2,0,1) ,  
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Table 1. Additional prefixes and corresponding 
rational co.mponents (RC)  of the modulation wave 
vector appearing in the unified setting of superspace 

groups for composite crystals 

Prefix D E F G H 
RC (~, 1,0) (~,0, 1) (0,~, 1) ( ! ,~ ,0 )  ( ! ,0 ,~)  

Prefix I X Y Z 
RC (0, 1, ~) (0, !, 1) (1,0, 1) (I, 1,0) 

(0, 1/2, 1), (1, 1/2, 0), (1,0, 1/2), (0, 1, 1/2), (0, 1, 1), 
(1, 0, 1) and (1, 1, 0). These cases are specified by the 
prefixes given in Table 1. They are also available for 
the superspace-group symbol of the usual modulated 
structure with a non-standard setting. 

7. Reflection conditions 

The unified setting for composite crystals leads to 
additional reflection conditions which have not been 
listed in the table of de Wolff, Janssen & Janner 
(1981). (The indices hklm are used instead of hi h2h3h4 
hereafter for convenience.) All the reflection condi- 
tions for general reflections due to the Bravais lattice 
are listed in Table 2. It should be noted that the same 
reflection condition appears in different settings. The 
reflection conditions for general reflections imply the 
centering translations. For example, h + k + l = 2n, 
h + l + m = 2 n ,  k + m - - 2 n  for FB in the table imply 
the centering translations of (½, ½, ½, 0), (½, 0, ½, ½) and 
(0, ½, 0, ½). It should be noted that, when the rational 
component of the wave vector is ½, the corresponding 
axis is doubled in the centered lattice compared with 
the unit cell describing the average structure accord- 
ing to the theory of superspace groups. [ W P in the 
tetragonal system is exceptional (see de Wolff et al., 
1981).] 

8. Description of the composite crystals 

In order to describe the composite crystal structure, 
it is sufficient to specify the lattice constants of the 
first substructure and the modulation wave vector for 
it, the permutation matrix for the second (third, 
fourth, . . .  if any) substructure(s), the superspace 
group, the number of formula units in the unit cell 
for each substructure and the description of the 
modulated substructure with reference to the unit 
vectors for each substructure. The lattice constants 
and wave vectors for the other substructures can be 
calculated from those of the first substructure and the 
permutation matrix. The superspace-group symbol 
implies the permutation matrix in many cases. In the 
case of type I with two substructures, the permutation 
is taken only on two parallel axes among 
d *e, d *e, d *e, d *e for the monoclinic, orthorhombic, 
tetragonal and hexagonal systems. Then the descrip- 
tion of the permutation matrix is neglected. 

Table 2. Reflection conditions due to the Bravais lattice 

P A  etc. in the first co lumn means the prefix of  the two-l ine s y m b o l  
and the Bravais type of  the average substructure. The reflection 
condi t ion  for the general reflection hklm is written in the conven-  
tion o f  International Tables f o r  Crys ta l lography  (1983) .  The wave 
vector specific to the type in the first co lumn is given in the third 
co lumn.  For the type WP, the reflection condit ion in the tetragonal 
Bravais lattice is different from that o f  the others, so two cases are 
listed. 

Type Reflection condit ion Wave vector 

PA k+ I= 2n 
PB h + l = 2 n  
PC h + k = 2n 
P! h + k + l = 2 n  
PF h + k = 2 n ,  k + l = 2 n ,  h + l = 2 n  
PR h - k + l = 3 n  (0,0, y) 
A P  h + m = 2 n  (~,/3, 0), (~, O, fl), (~, a,/3) 
BP k + m = 2 n  (a ,~ ,O) , (O,~ ,y ) , (o t ,~ ,y )  
c P  t+m=2,, t,~. o, !),/o, ~3, ~), (,~,/3, ~) 
UP k + m = 2 n ,  l + m = 2 n  (a,~,~) 

VP h + m = 2 n ,  l + m = 2 n  (~,/3, ~) 
WP h + k + m = 2n (tetragonal) (~, ~, y) 
WP h + m = 2n, k + m = 2n (others) (~, ~, y) 
AA h + m = 2 n ,  k + l = 2 n  (~, fl, 0), (~, O, y), (~, fl, y) 
DA h + k + l = 2 n ,  k + l + m = 2 n ,  (~,, 1, y) 

h + m  =2n  
EA h + k + l = 2 n ,  k + l + m = 2 n ,  (~,fl, i) 

h + m = 2 n  
MA k + l + m = 2 n  ( O , I , y ) , ( a , l , y )  
N A  k + l + m = 2 n  (0, fl, 1), (a,/3, l) 
BB h + l = 2 n ,  k + m = 2 n  (a, ~, 0), (0, ~, y), (ct, ~, y) 
FB h + k + l = 2 n ,  h + l + m = 2 n ,  (a,~, l) 

k + m = 2 n  

GB h + k + l = 2 n ,  h + l + m = 2 n ,  (1,~, y) 
k + m = 2 n  

LB h + l + m = 2 n  (1,/3, 0), (1,/3, y) 
NB h + l + m = 2 n  (0, fl, 1), (a, 13, I ) 
CC h + k = 2 n ,  I + m = 2 n  (a, 0, ~), (0, fl, ~), (a, fl, ~) 
HC h + k + l = 2 n ,  h + k + m = 2 n ,  (1, fl, ~) 

I + m = 2 n  

IC h + k + l = 2 n ,  h + k + m = 2 n ,  (a, 1,~) 
I + m = 2 n  

LC h + k + m = 2 n  (1, fl, 0), (i,/3, y) 
M C  h + k + m = 2 n  ( a , l , O ) , ( a , l , y )  
L! h + k + l + m = 2 n  ( 1,/3, 0), (1, 0, y), (I,  fl, y) 
MI h + k + l + m = 2 n  ( a , l , O ) , ( O , l ,  y ) , ( a , l ,  y) 
N l  h + k + l + m = 2 n  (a,O, 1),(O,[3,1),(ct,[3,1) 

LF h + k + m = 2 n ,  k + l = 2 n ,  ( i, fl, 0), (1, 0, y), ( 1, fl, y) 
h + l + m = 2 n  

M F  h + k + m = 2 n ,  k + l + m = 2 n ,  (a, 1, 0), (0, 1, y), (a, 1, y) 
h + l = 2 n  

N F  h + k = 2 n ,  k + l + m = 2 n ,  (O, fl, l ) , ( a , O , l ) , ( a , [ 3 , 1 )  
h + l + m = 2 n  

X F  h + k + m = 2 n ,  h + l + m = 2 n ,  (a, 1, 1) 
k + l = 2 n  

YF h + k + m = 2 n ,  h + l = 2 n ,  (1,/3,1) 
k + l + m  =2n  

Z F  h + k = 2 n ,  h + l + m = 2 n ,  (1,1, y ) 
k + l + m = 2 n  

RP h - k - m = 3 n  (~, ~, y) 

9. Examples of composite crystals and superspace 
groups 

In this section we show examples of composite crys- 
tals with triclinic, monoclinic, orthorhombic, trigonal 
and tetragonal superspace groups and their simple 
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description except for the structural parameters. In 
the followitig, each substructure is enclosed by square 
brackets in the chemical formula. 

(a) [LaS]x[CrS2]. This is a so-called misfit layer 
structure which consists of LaS and CrS2 layers (Kato, 
1990). The first substructure consists of LaS and the 
second of CrS2. Each substructure has a triclinic 
average structure but the structure was analyzed based 
on the non-standard setting_in which the C-centered 
lattice is taken: LCl: LC-~, a =5.936, b=5.752,  
c = 11.036 A, cos a = -0.0058, cos fl = -0.0924, 
cos y = -0.0003, k = a*+  1.67441b* + 0.16666c*, p2 = 
(2, 4), Za = 2, Z2 = 2. When we_t.ake A* = a*, B* = c*, 
C * =  a*+ b*, this becomes PP-~'PP-~, p2= (3, 4), k = 
-0.67441A* + 0.166666B* + 1.67441C*, Z1 = 1, Z: = 1. 
All the atoms are located in the general position. 

(b) [PbS]x[VS2]. This is a misfit layer structure 
similar to the previous one but with a different super- 
space group (Onoda et al., 1990). Each substructure 
is monoclinic (de Wolff et al., 1981) but the first 
substructure has the face-centered lattice because of 
the restriction in the choice of unit vectors mentioned 

F 2 .  ( ' 2  before: L 1 .H 1, a=5 .728 ,  b=5.789,  c = 2 3 . 9 3 9 ~ ,  
cos/3 = -0.1556, k = a* + 1.778b*. [The permutation 
matrix p2 = (2, 4) is implied by the superspace group.] 
In this case, only the V atom in the second substruc- 
ture is located at the special position 2(b) with site 
symmetry (~'). 

(c) [(Bi, Ca, Sr)2Cu203]x[CuO2]. This is an inter- 
growth structure with two substructures (Kato, 1990). 
Each substructure has the same orthorhombic super- 

Z iT~:Z i i l , a=12 .811 ,  b=l l .3446,  space group: F222 F~.22 

C = 3.9035 A, k = a* + b* + 1.4169c*. [The superspace 
group implies p 2 =  (3, 4) . ]  In the first substructure, 
Bi, Ca and Sr atoms occupy the same Wyckoff posi- 
tion 8(e) at random with site symmetry (2i'), Cu(1) 
and O(1) are at 8(f)  with site symmetry (2r') and 0(2)  

2_22~ is at 4(b) with (111,. Similarly, Cu(2) in the second 
t2-2-2~ and 0(3)  is at 8(i) substructure is at 4(c) with ~ ,  

with (2~). 
(d) [Ba]~[(Cu, Pt)O3]. This is also an intergrowth 

structure in which the (Cu, Pt)O3 forms a framework 
structure and Ba atoms are located in tunnels (Ukei 
et aL, 1992). The first Ba substructure has a hexagonal 
lattice while the second one has a rhombohedral 

1~ P 3 1 c .  l.~R3rn lattice: ,,  111.- t~, a=5 .817 ,  c=4 .233 ,~ ,  c o s y =  
-0.5,  k = ( a * + b * ) / 3 + l . 5 1 9 c * .  [P2=(3 ,4 ) . ]  All the 
atoms are in special positions: Ba in the first substruc- 
ture is at 2(b) with site symmetry (3) while (Cu, Pt) 

3m 
in the second is at 3(a) with site symmetry (1~) and 
O is at 9(b) with site symmetry (7). 

(e) [Ba]x[FeSz]. This is the third example of an 
intergrowth structure consisting of two substructures 
but these have periods commensurate to each other 
(Onoda & Kato, 1991). It was, however, analyzed on 
the basis of an approximate superspace-group sym- 
metry. The second substructure FeS2 forms the 
framework structure and the Ba atoms are located in 

tunnels. Both substructures have the body-centered 
tetragonal lattice: I~4""" 1 'ab"  x., i s s . ~ L ,  1 . . . .  a=7 .776 ,  c =  
4.986 ~ ,  k = a* + 0.9c*. [p2 = (3, 4).] The space group 
of the second average substructure is 14cm but the 
symbol 14bm is used because the former leads to an 
ambiguous superspace-group symbol (Yamamoto, 
Janssen, Janner & de Wolff, 1985). Ba atoms in the 

[ 4rnm'~ first substructure are at 2(a)  with site symmetry ~1 ~ ~ J. 
In the second substructure, Fe is at 4(b) with site 

(,,m2~ where the mirror m is normal to symmetry ~ ~ x I/, 
a + b ,  while S is at 8(c) with site symmetry (7). 

10. Discussion 

So far we have avoided the exceptional case of 
[AsF6][Hg]x[Hg]x which has been discussed by Jan- 
net & Janssen (1980). This is composed of three 
substructures, one of which consists of AsF6 and the 
other two of Hg (Pouget, Shirane, Hastings, Heeger, 
Miro & MacDiarmid, 1978). The first substructure 
AsF6 forms a body-centered tetragonal lattice. The 
other two substructures (Hg) have A-centered and 
B-centered monoclinic sublattices, in which the a* 
and b* axes are incommensurate to each other but 
one of these is common to the a* or b* axis of the 
first substructure and their c* axes are the same as 
the first o n e :  a *1 - -  a .3,  a .2 = (3 - ( ~ ) a  :~1 -~- ( -1  - ~ ) b  * 1 ,  

b*~=b .2, b * a - - ( - 1 - 6 ) ~ a * : + ( 3 - 6 ) b  *~ and c . 1 =  
c .2 = c .3, where 6 is a small irrational number. There- 
fore, there are five independent periods defined by 
a *~, b *~, c .1, a .2, b .3 with a .2 • b * : # 0  and a .3 • b .3 
0. Because of the symmetry of the Hg substructures, 
the superspace-group symmetry common to all the 
substructures is monoclinic. The Hg substructures 
are, however, related by a glide plane. As a result, 
total diffraction symmetry is orthorhombic and higher 
than the symmetry of the substructure (Fig. 10 of 
Pouget et al., 1978). Such a situation is not taken into 
account in the previous sections. We discuss this case 
briefly in order to show the applicability of the theory 
to such a case. 

This structure is an example of a composite crystal 
of type II and can be treated within the framework 
of the superspace-group theory in which the five- 
dimensional superspace group is applied to the 
merged Hg and AsF6 substructures. In the present 
theory, such a merged substructure is not considered 
because Hg really forms two substructures giving two 
sets of main reflections. Instead of generalizing the 
theory within the framework of the group theory to 
treat such a structure, we can use the groupoid 
(Sadanaga & Ohsumi, 1979). The superspace 
groupoid T is given by {hiGh/l ]hi, h f  I c H}, where G 
is the superspace group of the substructure and H is 
the set of operations hi superimposing the first sub- 
structure into the ith substructure and operating only 
on the first substructure and its inverse operator h/I  
operating on the ith substructure and superimposing 
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it into the first one. (hi is the identi ty operator.) The 
groupoid T is therefore the set of  operat ions which 
superposes each substructure onto itself (diagonal  
terms) or onto the other substructure (off-diagonal 
terms). The superspace group G is called the kernel 
and H the hull of  the superspace groupoid.  The 
structure analysis can be made  within the framework 
of  the present theory if  we use the operators in G 
and H. 

It is possible to classify the structure into two 
groups of  substructures, one of  which consists of  the 
second substructure of  Hg and part of  the first sub- 
structure and the other consists of  the third substruc- 
ture of  Hg and the remaining  part of  the first substruc- 
ture. The two groups are t ransformed into each other 
by the glide plane normal  to a * l - b  .1 which trans- 
forms a *~ into b *l. In the first substructure, each part 
has a tetragonal lattice but with monocl in ic  symmetry.  
These two parts have no common  atoms because they 
are related by the glide plane. We can apply the 
groupoid  theory to these two groups by recognizing 
the groups as the substructures in the above dis- 
cussion. The two structure groups have a five- 
d imens iona l  superspace group with monocl in ic  sym- 
metry. When the structure factor of  the first group 
Fo(h e) and h2 = {R[r} t ransforming the first part into 
the second one are considered,  the structure factor 
of  the total structure is given by F (h  e )=  
F0(he )+exp  (27rher)Fo(R-~h~). In the present case, 
h2 is the glide plane so that R-1 = R. Then the diffrac- 
tion pattern shows the rotational symmetry due to 
h2" F ( R h e ) = e x p ( 2 r r R h e r ) F ( h  e) because {Rlr} 2= 
{Elr+Rr}={E]O}  and therefore exp(27rRh~r)  = 
exp (-27rh~r),  where E is the identity operator. This 
ensures or thorhombic  diffraction symmetry.  Thus, 

instead of applying the superspace group for the 
merged Hg substructure, we can use the superspace 
groupoid as given in a previous paper  (Yamamoto  & 
lshihara ,  1988). This shows the appl icabi l i ty  of  the 
present theory to all cases. 

The author thanks Dr K. Kato and Dr M. Onoda,  
Nat ional  Institute for Research in Inorganic 
Materials,  for valuable discussions and for supplying 
test data in the development  of the new version of 
REMOS.  
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Abstract  

A procedure for the quanti tat ive evaluation of  struc- 
tural relat ionships among crystal structures is intro- 
duced based on the concept of  mappings  represented 

by pairs of  matrices (A, S). Lattice relat ionships,  sym- 
metry relat ionships,  local atomic deviations and map- 
ping failures are dis t inguished and for each type of 
relat ionship,  a figure of merit  is constructed. The 
different figures are combined  in a figure of  misfit 
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